EINDHOVEN
I U e UNIVERSITY OF
TECHNOLOGY

Eindhoven University of Technology

MASTER

A template attack on elliptic curves using classification methods

Yeilbek, E.

Award date:
2015

Link to publication

Disclaimer

This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

« Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
« You may not further distribute the material or use it for any profit-making activity or commercial gain

TECHNISCHE UNIVERSITEIT EINDHOVEN

MASTER THESIS

A Template Attack on Elliptic Curves
using Classification methods

Supervisors:
Author: p

. Lejla Bati
Elif Ozgen €y batiia

Berry Schoenmakers

A thesis submitted in fulfillment of the requirements
for the degree of Master of Science (MSc)

m the

Coding and Cryptology Group
Mathematics and Computer Science, Technische Universiteit Eindhoven

November 2015

Technische Universiteit Eindhoven

Abstract

Mathematics and Computer Science

Information Security Technology (Kerckhoffs Institute for Computer Security)
Master Degree

A Template Attack on Elliptic Curves using Classification methods

by Elif OzaEN

Side-channel analysis (SCA) is a cryptanalytic technique that uses information leaked
from a device when it performs a cryptographic operation in order to retrieve the private
key. For instance, timing differences, power consumption or electromagnetic emanation
are well-known leakage types of a device. In this project, we aim to perform a side-
channel attack based on power consumption leakage of a device running an elliptic
curve cryptographic implementation, particularly we focus on point multiplication using
a Double-and-Add Always algorithm. We decided to attack a Double-and-Add Always
algorithm implementation since that algorithm is specifically designed to be resistant
against Differential Power Analysis (DPA) by having a constant time format. Some of
the classical SCA techniques use correlation methods (e.g. Pearson correlation) as side-
channel distinguishers during the key hypothesis test. In our project we plan to apply
classification algorithms as side-channel distinguishers and in this way we should be able
to retrieve the key efficiently. By classification we name the method of classifying a data
set according to similarities. In our project we will apply a template attack, in a similar
approach as in Online Template Attacks (OTA) [1], with classification algorithms as a
side-channel distinguisher. To the best of our knowledge, our analysis constitutes the
first application of using classification techniques of k-Nearest Neighbour, Naive Bayes
and Support Vector Machines with template attack on the Double-and-Add Always
algorithm for elliptic curves. According to the results, we propose relevant countermea-

sures.

Contents

Abstract

Contents

List of Figures

List of Tables

1 Introduction

1.1
1.2
1.3
1.4

Introduction L
Side-channel Attack on Elliptic Curve Cryptography
Related Work L
Our Contribution

2 Elliptic Curves

2.1

2.2

2.3

Elliptic Curve Cryptography
2.1.1 Weierstrass Curveo
Doubling and Adding on Short Weierstrass form Curves in Affine Coor-

dinates L L
2.2.1 Projective Coordinates
2.2.2 Jacobian Representation 0oL
Elliptic Curve Cryptography Binary Scalar Multiplication Algorithms . .
2.3.1 Double-and-Add Always Algorithm
2.3.2 Montgomery Ladder L.

3 Side-Channel Attacks

3.1
3.2

3.3
3.4
3.5

Side-Channel Analysis
Characteristics of Power Traces
3.2.1 Density Function, Mean and Variance
3.2.2 Multivariate-Gaussian Model
Simple Power Analysis
Differential Power Analysis
A powerful SCA: Template Attacks
3.5.1 A brief description of Template Attacks
3.5.2 Template Building L.
3.5.3 Template Matching L.

ii

ii

iv

11
12
13
13

Contents iii
4 Classification (and Clustering) Methods 23
4.1 Machine Learning oL 23
4.2 Classification e 24
4.2.1 Nalve Bayes Classification 25

4.2.2 k-Nearest Neighbour Classification 26

4.2.3 Support vector machines (SVMs) 27

4.3 Clustering o o e 29
4.3.1 k-means Clustering 30

4.4 Feature Selection for Classifying High Dimensional Data 30

5 Our Attack 31
5.1 Theory of the Attack 32
5.2 Application of the Attack using Matlab 37
5.3 Results and Analysis 40

6 Conclusion and Future Work 42
A Matlab Code 44
Bibliography 46

List of Figures

2.1
2.2

4.1
4.2
4.3

5.1

5.2
5.3
5.4
5.5

5.6

A sample elliptic curve (y? = 2% — 3z + 3) with from [2, Chapter 9]
Times for Elliptic Curve operations (UltraSPARC) from [3]

k-NN classification for k =1, k=2and k=3 1[4]
Sample linearly separable classes [5] L.
SVM classification from [6] in linear separable case

Sample illustration of our attack. These points and the traces are only
for illustration.

Our target trace P
The first and typical Multiplication Pattern
The correlated patterns and the first pattern (the 19th) is chosen

The correlated patterns and the first pattern is chosen for template trace
2P e

SP

v

List of Tables

4.1 Two samples from the Training Data Set

5.1 Results from different number of templates

Chapter 1

Introduction

1.1 Introduction

It is well known that cryptographic devices like smart card readers leak some physical
information, for instance it could be the amount of power they consume in a specific

time period.

Therefore, a set of attacks is proposed in order to take advantage of these physical
leakages to obtain sensitive information. That sensitive information is usually the cryp-
tographic private key. As those attacks are using “side-channel” information, they are

called side-channel attacks.

As an important aspect of these attack we can say that they work efficiently even though
the algorithm under attack has been shown to be mathematically very secure. That is
because, most of the time these leakages occur due to the way the algorithm is imple-
mented. Therefore, the leakage has correlation with the algorithm that is being used.
That is the reason that Side-channel Analysis (SCA) are successful since we know that
the measured leakage like power consumption depends on the instructions (operations)

and the data itself (operands).

For instance, one of the first shown side-channel attacks was applied to a DES algorithm
running device using the power consumption of that device by Kocher et al. in [7].
Moreover, there are many examples of those attacks that are applied to AES, RSA and
Elliptic Curve Cryptography (ECC).

In our thesis, we focus on ECC. As we mention in Chapter 2, ECC plays an important
role in cryptography, because of the hardness of solving the Discrete Logarithm Problem
on elliptic curves. Therefore, when we apply a side-channel attack on ECC, our aim is
to find the secret key using the side-channel information (the power consumption) from

the scalar multiplication algorithm.

Chapter 1. Introduction to Side-channel Analysis on Elliptic Curve Cryptography 2

We elaborate a specific type of side-channel attack called template attacks, in Chapter
3. The template attack that we apply on a ECC scalar multiplication algorithm called
Double-and-Add Always, makes use of the classification methods. These classification

methods are introduced in Chapter 4.

In this chapter, we give more details on side-channel attacks on ECC and give related

work. In the following we explain our contribution.

Chapter 2 introduces ECC in details in order to explain the algorithm that we are
attacking. In Chapter 3 we elaborate on side-channel attacks and especially the template
attacks. In Chapter 4 we introduce the classification algorithms that we used for our
template attack. Chapter 5 explains and analyzes our attack. Lastly, Chapter 6 gives

our conclusion and future work.

1.2 Side-channel Attack on Elliptic Curve Cryptography

In this section, we give a brief introduction on Side-channel Attacks on Elliptic Curve

Cryptography.

Side-channel Attacks is a cryptanalytic technique of using leaked side-channel (physical)
information of a device while running a cryptographic operation and via that leaked

information retrieving the private key.

From the very first papers of SCA, this attack has been applied to many different
cryptosystems such as AES as shown in [8, 9], DES in [7, 10|, RSA in [11] and ECC
[12-15] moreover [16] presents an attack for both DES and AES.

Briefly, SCA on ECC aims at retrieving the scalar value (the private key) via using
the leaked information (in our case it is the power consumption) during the scalar

multiplication operation.

The scalar is denoted as k and assuming that we have two points () and P from an
elliptic curve F, satisfying Q = k x P. The public information) and P are known while
k is kept secret. Depending on the implementation and the case of known or unknown
input, while performing scalar multiplication, different types of SCA can be applied to

retrieve k.
To accomplish this task, SCA (particularly Differential Power Analysis, is introduced in
Chapter 3) often consists of several certain steps according to [17], such as;

1. Collect measurements (traces)

2. Use statistics on measurements for noise elimination and alignment

3. Select a model for power consumption

Chapter 1. Introduction to Side-channel Analysis on Elliptic Curve Cryptography 3

4. Select a side-channel distinguisher as in [16, 18, 19]
5. Test the hypothesis

6. Find the correct key

Meanwhile, as the attacks improve, many countermeasures are introduced as well. The
best known three countermeasures according to [14] are randomization of the private
exponent, blinding the point P (where () = kx P) and randomized projective coordinates

(these type of coordinates are discussed in Section 2.2.1).

We are aiming to apply a template attack on Double-and-Add Always algorithm, where
we have templates and use classification methods as side-channel distinguisher. And as
we focus on chosen sub-parts of target point’s power trace, we try to classify it with our

template power traces in order to extract the information of the current bit of the key.

Template attacks are discussed in Chapter 3. Briefly, this type of side-channel attacks
consists of two steps called template building and template matching. In the first phase,
template building, the attacker is assumed to have an identical device to the device
under the attack and is able to execute instructions with chosen input data. Each of

these instructions’ leakages are recorded and we call each of the measurements templates.

The attacker tries to characterize the device under attack with those templates. The
next step is the template matching phase. In that phase, the attack uses the actual
device under attack. This time only one trace (called target trace) is collected and the
attacker tries to capture the private key of this device via matching the target trace with

one of the template traces.

The details of the attack can be found in Chapter 5. In the Chapter 2, we provide
information on Elliptic Curve Cryptography. The Chapter 3 introduces and elaborated
Side-Channel Attacks ob Chapter 4 introduces Classification and Clustering algorithms.

In Chapter 5, we demonstrate our experiments and explain how we implemented SCA
in practice. Our approach and the tools that we used to run the attack is described in

that chapter as well.

Chapter 6 concludes our overall work and mentions future work.

1.3 Related Work

In [20], a template attack is applied to ECDSA algorithm in a 32-bit setting. Moreover,
it is concluded that, in order to make the implementations secure against template

attacks, we need to use countermeasures against DPA.

Chapter 1. Introduction to Side-channel Analysis on Elliptic Curve Cryptography 4

The work described in ota proposes a template attack using the online templates that
requires only one power trace per key-bit plus the target trace (e.g. for a 256-bit exponent
we need to have 257 power traces) that is captured during the scalar multiplication
operation run on the device under the attack. The name online templates is used for
the templates because they are generated after the target trace is acquired. Moreover,

it is elaborated that there is no need for the preprocessing phase on template building.

The distance metric is determined by the classification algorithms and depending on
that chosen metric we can decide on data closeness. There is another technique similar
to classification, called clustering. This method clusters the data, but in this case we do
not have the labels. Labels refer to the name of the classes. That difference makes this
method an unsupervised learning. Classification is a supervised learning as it has labels

for the data sets.

As an unsupervised learning technique, clustering in SCA is used in many proposed
studies, such as [21] and [19].

In [19], the steps of DPA are followed and as a side-channel distinguisher, cluster analysis
is used. That is done via choosing clustering instead of for instance taking the difference
of means after partitioning. The candidate for the current bit of the key that gives the
best clustering result is chosen as the correct bit of the secret key. Moreover, the quality

of the clustering is to be measured by the defined clustering criterion functions,

There is a similar work to ours which uses an unsupervised learning method called
clustering in SCA is [22] that is applied to elliptic curve scalar multiplication. In this
work, we have a single-execution (horizontal) setting. The aim is to find similar segments
of the execution via clustering, and then recover the corresponding key bits. That paper
uses the electromagnetic emanations and location-based leakages and shows that the
combined measurements from different locations on FPGA (a type of programmable
circuit even after being manufactured) gives a better clustering result. The k-means
clustering algorithm with Euclidean distance metric is used. The k-means clustering

algorithm is introduced in Section 4.3.1.

Another close approach to ours is [23]. In[23], template attacks are taken into account
and data reduction techniques, namely mean class variance, the Spearman correlation,
and principal component analysis, are tested for the template building (profiling) phase
in combination with Linear Discriminant Analysis. Linear Discriminant Analysis is
used as a distinguisher for the classification step (template matching) in which they are
attacking to AES 128-bit.

Chapter 1. Introduction to Side-channel Analysis on Elliptic Curve Cryptography 5

1.4 Our Contribution

For this thesis, we performed a template attack on the Double-and-Add Always algo-
rithm using the classification algorithms called k-Nearest Neighbour, Naive Bayes and

Support Vector Machines.

To the best of our knowledge, our analysis constitutes the first application of using clas-
sification techniques of k-Nearest Neighbour, Naive Bayes and Support Vector Machines
with template attack on the Double-and-Add Always algorithm for elliptic curves.

Our attack can also be applied to Montgomery Ladder as that algorithm has a similar

characteristics with Double-and-Add Always algorithm.

Chapter 2
Elliptic Curves

In this chapter, we introduce Elliptic Curve Cryptography as this is the cryptographic
setting that we are using and the Double-and-Add Always algorithm as this is the
algorithm that we are applying a template attack.

2.1 Elliptic Curve Cryptography

Public key cryptosystems are known to provide security based on hard number theo-
retical problems. For instance, RSA uses the integer factorization problem in order to

achieve a strong security level.

However, the problem with most public key cryptosystems was that they usually require
long key length and therefore cause computation overhead which is not very efficient.
In the study [2], it is shown that ECC provides the same security level with RSA with
much shorter key lengths. That result also indicates that this particular PKI (Public
Key Infrastructure) can be used for IoT (Internet of Things) devices which require light

weight implementations.

Elliptic Curve Cryptography is using elliptic curves over a finite field as cryptographic

primitive.

Elliptic curves form the geometrical structure which can be defined by different forms

and therefore by different formulae. Some of these equations are introduced below.

The ECC forms a group structure. For example, because of the closeness property of
the binary operation, we have the same feature in a group therefore when we do an
addition of two elements we acquire another element that is from the same group. As
elliptic curves are also group, then when we make addition of two points of an elliptic

curve, we get another point that is in that curve as well.

Chapter 2. Elliptic Curves 7

We have a special element called “unit element” (also called “point at infinity”). This is
the point from an elliptic curve, such that when we add another point P to this element
then we get P itself back. Thus the unit element corresponds to the identity element of

group structure.

Moreover, there is a number theoretical problem called Elliptic Curve Discrete Logarithm
Problem (ECDLP). Let P and @ be two points on an elliptic curve where Q = k x P,
where k is an integer. Solving ECDLP means finding that scalar k which satisfies

@ = k x P. Therefore, scalar multiplication has an important role in ECC.

2.1.1 Welierstrass Curve

For an elliptic curve E over a finite field F, we have the following curve equation, it is

called Weierstrass form, in affine form as in follows:

E:y* +ayzy +azy = 23 + agx® + agx + ag (2.1)

where a;’s are coefficients.

Figure 2.1 represents sample elliptic curve in the short Weierstrass form from Equation
2.3.

2.2 Doubling and Adding on Short Weierstrass form Curves

in Affine Coordinates

Let us use the same notation in [2, Chapter 9], the group operation defined is addition

(+). Now, we have two cases; namely point addition and point doubling.

Let P = (x17y1)7 Q = (x27y2)7 R = (3337y3) ;then

P+Q=R (2.2)

Here, the coordinates of the sum is not calculated as in classical analytical geometry but

with specific-curve type dependent formulas.

As in [2], we can use the following point addition formulae for an elliptic curve defined

over finite field F}, where p is prime and in short Weierstrass form:

E:y*=2+ax+b; abeF, (2.3)

Chapter 2. Elliptic Curves 8

FIGURE 2.1: A sample elliptic curve (y?> = 2® — 3z + 3) with from [2, Chapter 9]

If P # @ (Addition):
Y2 — W

s = mod p (2.4)
Tro — X1
If P =@ (Doubling):
322 +a
s=——— mod 2.5
o p (2.5)
The sum has the coordinates as;
z3=s>—12, —2xy modp (2.6)
and
ys =s#* (r1 —x3) —y1 mod p (2.7)

In this representation, we see that, for addition there are t(A+ A) = [+2M + S that is

1 inversion, 2 Multiplications and 1 squaring operation are performed while for doubling

Chapter 2. Elliptic Curves 9

t(2A) = I + 2M + 2S that is 1 inversion, 2 Multiplications and 2 squarings operation !
are performed [3].

As we see in Section 2.2.1 and in Section 2.2.2, we do not have any inversion operations
on these representations, which makes the implementation of the ECC design more effi-
cient. However, in affine coordinates we do have inversion operations. We can conclude
that, according to the number of multiplication, inversion and squaring operations, the
efficiency of Jacobian representation is greater than or equal to the efficiency of Pro-
jective representation is greater than or equal to the efficiency of Affine representation.

Here efficiency is in terms of time.

We can refer to that conclusion from Figure 2.2 where from [3] also demonstrates their
method of using a new and mixed coordinate system is the most efficient one. In this

figure we can also verify that inversion is the most time consuming operation.

In Figure 2.2, under the field operations we can see the time required by each type of
operations. Under the “Elliptic Curve operations”, ¢(A 4 A) refers to addition in affine
coordinates, t(J°¢ + J¢) refers to addition in Chudnovsky Jacobian coordinates system
which is a different type of Jacobian coordinates that are designed to make the addition
relatively faster moreover J™ and “mixed coordinates” in the figure is the modified

Jacobian coordinate system that is proposed by [3].

2.2.1 Projective Coordinates

Projective coordinates are acquired via switching from the affine form (z,y) to (X,Y, 2)

where © = X/Z and y = Y/Z, giving the following elliptic curve equation
Ep:Y?Z = X3 +aX2Z? 40273 (2.8)

[3]. The benefit of using projective representation is that this form of representation
does not require inversion operation (as it can be seen from the addition and doubling
formulas) instead it uses more multiplications [2, Chapter 9]. The reason of eliminating
inversion operations is that, these operations require the most time complexity compared

to multiplication and squaring operations. Figure 2.2 is explaining this situation.

As we have different form of representation for coordinates than affine coordinates, the
addition and doubling changes as well. We use the same notation and illustration as

Cohen et al.[3] for explaining these operations.
For P = (X1,Y1,Z1), Q = (X2,Y2,2Z3) and P+ Q = R = (X3,Y3, Z3).

Addition (P # £Q) for that representation is as follows:

!One of M’s in both addition and doubling comes from not to have zero divison

Chapter 2. Elliptic Curves 10
160 bit key | 192 bit key | 224 bit key
field operations (usec)
160/192/224 bit addition 0.59 0.64 0.71
160/192/224 bit multiplication 6.50 8.93 12.00
160/192/224 bit squaring 5.35 7.22 9.01
reduction (320/384/448 — 160/192/224 bit) 2.37 2.77 2.62
160/192/224 bit inverse 166 213 261
elliptic curve operations (msec)
addition (£(A + .A)) 0.203 0.257 0.314
addition (t(J°+ J°)) 0.130 0.171 0.215
addition (¢(J + J)) 0.144 0.191 0.239
doubling (£(27™)) 0.079 0.103 0.127
doubling (¢(27)) 0.094 0.122 0.148
elliptic curve exponentiation (msec)
mixed coordinates (case 1) 16.17 24.93 35.73
mixed coordinates (case 2) 16.66 25.54 37.53
single coordinate (Jacobian coordinate) 18.66 28.79 41.86
single coordinate (projective coordinate) 20.33 30.17 44.79

FIGURE 2.2: Times for Elliptic Curve operations (UltraSPARC) from [3]

X3 =vA,

Y3 = u(viX1Zy — A) — v3Y1 25,
T = 0371 7o

with u = Y221 — Yi Za,

v = XoZ1 — X1 7o,

A=u?Z1Zy — 03 — 202X 2.

Doubling (R = 2P) for that representation is as follows:

X3 = 2hs,
Y3 = w(4B — h) — 8Ys2,
Zg = 883

with w = aZ? + 3X3,

Chapter 2. Elliptic Curves 11

S = Y1Z1, B = X1Y18 and h = w2 — 8B.

In Section 2.2 we see that, in affine coordinates system for addition there are t(A+.4) =
I+4+2M + S that is 1 inversion, 2 multiplications and 1 squaring operation are performed
while for doubling ¢(2.4) = I + 2M + 25 that is 1 inversion, 2 multiplications and 2

squaring operations are performed (¢ function refers to computation time).

However, in projective representation, for addition there are ¢(P + P) = 12M + 2S5
that is 12 multiplications and 2 squaring operations are performed while for doubling
t(2P) = TM + 5S that is 7 multiplications and 5 squaring operations are performed.
That is why, as indicated in [2, Chapter 9], projective representation costs less than affine
representation since inverse operation is more expensive than addition, multiplication

and squaring operations. This difference can be observed from Figure 2.2.

2.2.2 Jacobian Representation

We again use the same notation and illustration as Cohen et al.[3] for explaining these

operations.

Jacobian coordinates are similar to projective, however in this case we are switching
from the affine form of (z,y) to (X,Y, Z) where x = X/Z? and y = Y/Z? that is giving

the following elliptic curve equation.

E;:Y?=X34aXZ*+02° (2.9)

For P = (X1,Y1,71), Q = (X2,Ys,75) and P+ Q = R = (X3,Y3, Z3).
Addition (P # £Q) for that representation is as following:

X3 =—H3-2U,H% + 12,

Y3 = —S1H? +r(U H? — X3),

Zs = Z1Z4oH

with Uy = X122,

Uy = XpZ3, 51 =123,

ngYgZ%, H=U;—-Ujandr=35—25.

Doubling (R = 2P) for that representation is as following:

X3=T,

YES=_8}G4+M(S_T)7

Chapter 2. Elliptic Curves 12

Zy =217,
with S = 4X;Y7,
M =3X?+aZ{ and T = —25 + M?2.

We can see that in the Jacobian representation for addition there are t(J +J) = 12M +
45 that is 12 multiplications and 4 squaring operations are performed while for doubling
t(2J) = 4M + 6S that is 4 multiplications and 6 squaring operations are performed.
That performance is more efficient than both projective and affine representations in

terms of time. Figure 2.2 from [3] illustrates that conclusion as well.

2.3 Elliptic Curve Cryptography Binary Scalar Multipli-

cation Algorithms

Our project aims to attack the Double-and-Add Always algorithm. Moreover, as an-
other similar binary scalar multiplication algorithm, the Montgomery Ladder can also

be exploited by our attack.

An elliptic curve scalar multiplication is the method of computing & x P where P is a

point from the given elliptic curve and k is a [-bit scalar.

Binary scalar multiplication algorithms use the binary representation of the scalar k
that is

-1
k=) k2 (2.10)
=1

And the scalar multiplication is :

-1
kx P =Y kix(2xP) (2.11)
=1

That scalar multiplication can be performed via Double-and-Add multiplication algo-

rithm as in Algorithm 1.

It is explained in [24] that, since power consumption of addition and doubling operations
are different, due to different short Weierstrass formulae as showed in Section 2.2, one
can distinguish that difference in power consumption traces and therefore retrieve the
key. The key retrieval is easy because there is the “if” clause which makes the entire

algorithm process dependent on the current bit value of the key.

Chapter 2. Elliptic Curves 13

Algorithm 1 Double-and-Add Scalar Multiplication Algorithm [24]
Input: P, [-bit scalar k = (1, kj—2, ..., ko)2
Output: Q =k xP

1: Ry« P

2: for j <~ [—2 down to 0 do

3 Ry + 2Ry

4: if(kj = 1) then Ry < Ro+ P
5: end for

6: return Ry

2.3.1 Double-and-Add Always Algorithm

That algorithm is created as it uses one of the countermeasures proposed by [14] against
SPA that is inserting dummy instructions to regular double-and-add algorithm, hence
there is always an addition after a doubling operation as [24] demonstrates. That is
because, in Double-and-Add algorithm 1, when the current bit of the key is 0, there is
only a doubling operation performed however in algorithm 2 case there is addition as
well even though that addition does not have an importance on the computation of the
actual value. This technique makes this algorithm an algorithm with data-independent

execution path. In Algorithm 2, Double-and-Add Always is illustrated.

Algorithm 2 Double-and-Add Always [24]
Input: P, [-bit scalar k = (1, kj—2, ..., ko)2
Output: Q =k xP

1: Ry« P
2: for j <~ [—2 down to 0 do
3 Ry + 2Ry
4 R+ Ry+ P
5: b+ k‘j
6
7
8

R() — Rb
: end for
: return Ry

In our project we are attacking to this algorithm as it is explained in Chapter 5.

2.3.2 Montgomery Ladder

Montgomery Ladder is another scalar multiplication algorithm. Our attack can also be
applied to that algorithm since it has the same structure as Double-and-Add Always.
We give further information on how we can use our technique to attack that algorithm
on Chapter 6.

Chapter 2. Elliptic Curves

Algorithm 3 Montgomery Ladder [24]

Input: P, [-bit scalar k = (1, kj_o, ..., ko)2
Output: Q =k xP
1: Ry+ P
2: R1 + 2P
3: for j + [—2 down to 0 do
4 b+ k‘j
5: Ri_p < Ry + Ry
6 Ry + 2Ry
7: end for
8: return R,

Chapter 3

Side-Channel Attacks

In this chapter, we elaborate on side-channel attacks as well as template attacks since it
is the type of attack that we apply. Moreover, we analyze the structure of power traces

which gives us more insight about analyzing side-channel leakages.

Our work focuses on using the classification methods that we introduce in Chapter 4

within template attack.

3.1 Side-Channel Analysis

In a cryptosystem as we intend to have strong cryptographic primitives that satisfy the
target security level, there are two points of view that we focus on in terms of cryptanaly-
sis. The first point of view would be classical cryptanalysis that deals with mathematical

aspect of primitives, which can be considered as a theoretical /mathematical approach.

On the other hand, there is another view that deals with physical information which is
leaking from the system. The last approach can be considered as a practical/concrete

approach as it tries to attack the system using those acquired physical information.

SCA can utilize many different sorts of physical information, for instance timing [11] or

power consumption [7].

SCA represents the practical aspects of cryptanalysis techniques. The very first paper
of an example of SCA is taking the timing measurements as a side-channel leakage in

order to attack and retrieve the key, by Kocher [11].

The main idea behind timing attacks is to retrieve the private key via using the infor-
mation of elapsed time during the key-dependent operations that is using that private

key. As it was indicated by Kocher [11], operations consume amount of time depending

15

Chapter 3. Side-Channel Attacks 16

on the data they are processing and in our case that data would be the private key and

other input data such as the plaintext [11].

Power consumption is considered another physical leakage that may cause key retrieval.
In 1999, Kocher et al. proposed in [7] the usage of power consumption traces (power

traces) of a device during running a cryptographic operation.

Similar to timing attacks, power consumption also depend on the data as well as the
operation that is being processed. For instance Hamming weight model is used most of

the time, which focuses on switches between 0 and 1.

For instance, there will be a high power consumption while switching from 0 to 1 and
a low power consumption while the value stays the same or switching from 1 to 0.
Furthermore, besides a power model we need a side-channel distinguisher that helps
to find out the similarities or differences between collected power measurements. We
refer to those measurements as traces in SCA terminology. Thus, trace is a power

consumption data that is measured from the target device.

That kind of analysis on power traces of a device, later in sections 3.3 and 3.4, is

elaborated.

Generally for SCA, as we are using physically leaked information, there are probabilities
that those leakages (traces) have electrical noise or misalignment (can be static or elas-
tic). These problems might occur due to the nature of gathering physical information

or intentionally injected countermeasures by the implementer.

Moreover, we have two different settings in SCA; namely horizontal and vertical. Hori-
zontal setting in SCA refers to make analysis/attack via only one target power trace in
different times [25, 26]. On the other hand, vertical setting takes more than one power

traces for same time and processes the analyze on them.

The work in this thesis is using the power analysis technique, particularly a variant of

template attack, therefore we focused on that particular type of SCA on ECC platform.

Moreover, we introduce a different side-channel distinguisher to be applied to the mea-
surements collected from a device running cryptographic operations which is the classi-

fication algorithms.

3.2 Characteristics of Power Traces

In order to observe the SCA works on power traces, we introduce the characteristics of

power traces which also helps us to define they way our attack works.

Chapter 3. Side-Channel Attacks 17

In [27, Chapter 4], more details on that topic is represented, and in this section (includ-
ing the subsections 3.2.1 and 3.2.2) we follow the same explanations, definitions and

notations from this work.

For power traces, there are two important cases for an attacker to make observations,
such as operation-dependent data and data-dependent (operand-dependent) data. The
power, that is consumed, depends on the operation that the device is running and the

data that the device is processing.

There are several components of traces namely; P,,, Piata;s Pel.noise and Peopst-

P,,: Operation-dependent part of the trace

Pjaia: Data-dependent part of the trace

P, noise: Electrical noise (In case of keeping the data and the operation fixed, the

total power consumption is different for every run due to that component.)

P.onst: Constant leakage that every device has in different amounts

As a result we have;

Ptotal = Pop + Pdata + Pel.noise + Pconst

where Pj,tq; stands for the entire power consumption sum for the chosen part (point) of
the trace. As these values are chosen points of the traces, they form a function of the
time structure, moreover that the electrical noise function has a normal distribution form
(also called Gaussian Distribution) therefore power traces are also in normal distribution

form in that case as [27, Chapter 4] indicates.

3.2.1 Density Function, Mean and Variance

The expressions, in this section, are the primitives that define the characteristics of a
trace mathematically. Therefore, to know the structure of these expressions helps us to

analyze the traces.

Normal distribution is defined by a density function f which is dependent on two pa-

rameters called mean value —oco < p < oo and standard deviation o > 0.

The mean value p (also called expected value) and standard deviation o are defined
as following. The parameter Var(X) that we used below is the square of the standard

deviation o.

Chapter 3. Side-Channel Attacks 18

o2 =Var(X) = BE(X — E(x))?) (3.2)

According to this notation, a normally distributed variable X with mean p and standard
deviation o is denoted as X ~ N (p, o). Moreover, if we have 4 = 0 and o = 1 then we

have standard normal distribution.

The role of mean value in a normal distribution is that, it is the parameter that expresses

the most possible output out of an experiment as [27, Chapter 4] indicates.

Furthermore, the following equation is the density function.

3.2.2 Multivariate-Gaussian Model

We focus on Multivariate Gaussian Model in this subsection. That is because we use

this expression in order to define template attacks in Section 3.5.

That model is important for us to introduce and analyze the Template attacks better
in Section 3.5. It is indicated in [27, Chapter 4] that we need to model a power trace
t in form of multivariate normal distribution when we take the correlation between
points of that power trace into account. That is because we have the power trace as
normally distributed due to electronic noise’s normal distribution form. In that model,
the correlation between points of the power trace are not taken into account. It is
also indicated that, multivariate normal distribution can be described by C that is a
covariance matrix and m that is a mean vector. In that model we have the density
function defined in as Equation 3.4 where / stands for taking the transpose of the

matrix.

Let us denote the mean vector depending on d;, k; as m(7) and the covariance matrix

depending on d;, kj as C(+9)

z) = ! coxp(— L (x — mEDY(CEDY . (x — i)
1@ = e aecany 2 J(CH) A) (34)

In Equation 3.4, C is the matrix of covariance values that is computed by Cov function
of two points, namely it consists of covariance values ¢;; = Cov(X;, X;). i and j here
are the time indexes thus X; is the point at time 7. And m is the vector of mean values

m; = E(X;) for each point of the power trace.

[27, Chapter 4] defines covariance as follows:

Chapter 3. Side-Channel Attacks 19

3.3 Simple Power Analysis

Simple power analysis (SPA) is a variant of SCA that is aiming to retrieve the key with
only one or very few power consumption traces. SPA was firstly proposed by Kocher et
al. in [7].

As we said that SPA works with only one or very few traces, [27, Chapter 5] specifies
these two types of SPA as single-shot SPA and miltiple-shot SPA. In single-shot SPA,
we apply the attack single-shot SPA with only one power trace while in multiple-shot

SPA we use multiple traces.

[27, Chapter 5] also distinguishes these two types of SPA techniques with a benefit
namely, in case of multiple-shot SPA we have multiple traces therefore we can take their

mean in order to reduce the amount of noise.

3.4 Differential Power Analysis

Differential power analysis (DPA), firstly introduced by [7], is another type of SCA.
That attack requires usage of statistical tools such as correlation measurements. As
the name ”differential” shows, we focus on relations within the acquired traces. That

relation refers to behavioral similarities or differences.

In [27, Chapter 6] it is indicated that one of the benefits of applying DPA is that we
do not need a detailed knowledge on the device under the attack. It is mentioned that
having the knowledge of cryptographic algorithm that is been used by the device under
the attack is usually sufficient when we perform DPA. Another pointed out benefit is
that, DPA can still retrieve the key successfully even in case of high level of noise.
Moreover, [27, Chapter 6] points several differences between DPA and SPA. One of
these differences is that in DPA the data dependent power consumption is focused while
in SPA patterns, which is basically about the shape that the trace has, in the trace is

focused.

3.5 A powerful SCA: Template Attacks

As our attack is a template attack-variant, we need to introduce and elaborate these
kinds of attacks. In this section, we use guidance and the same notation of Mangard et
al. work that is [27, Chapter 5].

Chapter 3. Side-Channel Attacks 20

We start by giving a brief description of template attacks and continue on introducing

the two phases of that attack namely; template building and template matching phases.

As we also follow the template building phase, in the template matching phase we use
a different method to be introduced in Chapter 4 and showed in Chapter 5. That
method is using the classification algorithms instead of computing probability density

function in the template matching phase.

3.5.1 A brief description of Template Attacks

We see that we can express a power trace in multivariate distribution form in Section
3.2.2. Mangard et al. [27, Chapter 5] uses that model and notates the pair (m, C) as

template which corresponds to the mean vector and the covariance matrix.

As we mentioned before, we follow the guidance and the same notation of work by

Mangard et al. [27, Chapter 5] in this entire section.

In template attack we have two phases called template building and template matching
phases. In the first phase, we are aiming to characterize the device that we are attacking
via running the device with different data d; and keys k; and log the power consumption

signals/traces.

After all the pairs of (d;, k;) are collected, we compute the mean vector and covariance

matrix. Ultimately, there will be a template for each of these pairs such that (d;, k;) :

ik = 1M, ik
bk, = (m, C)g, i

Since we have collected our templates, now we can enter to the second phase; Template
Building. In that step, we basically use our templates and one power trace (we can call

that trace as target trace as well) to compute the probability density function.

One power trace (target trace) is denoted as t and the template is denoted as fy, x; =
(m, C)di’kj and the probability density function is computed as in Equation 3.6 where

T refers to the number of points of the power trace.

exp(_% (6t = mEDY . (CEI) =L (f — m(B)))
V(2 m)T - det(Cld))

p(t; (mv C)di,kj) = (3'6)

After probability density function (Equation 3.6) is computed for each template, we
seek for the highest probability. The highest probability indicates the correct template

as well as the correct key.

Chapter 3. Side-Channel Attacks 21

3.5.2 Template Building

As we mentioned in the brief description on how template attacks work in Section 3.5.1,
we are collecting a number of template pairs with different data d; and keys k;. We do

this in order to characterize the device under the attack.

[27, Chapter 5] it is described that we can build those templates in different ways de-
pending on how much information we know about the device that we are attacking.
Moreover, we need to find the interesting points that we build our templates from,

because these are the points that are holding the most information.

Some of these different ways of building templates are given as the following; templates
for pairs of data and key, templates for intermediate values, and templates with power

models.
The points that are correlated to the (d;, k;) pairs are the interesting points.

Templates for intermediate values is the strategy of building templates from a function
f(di, k;). Thus, the interesting points that we use to build the templates from are the

ones that are correlated to that function.

Templates with power models is another strategy according to our guidance. That
strategy is suitable when we choose a specific cryptographic environment that is using

a specific power model like Hamming weight.

According to that, when we say correlated to, we mean that correlated to the instructions
that are involving the chosen (d;, k;) pairs or function f(d;, k;) depending on the strategy

that we select.

In our work, we perform that phase by generating a classification model from Chapter
4. That model is generated via template traces which has the aim of characterizing the

device under attack.

3.5.3 Template Matching

According to procedure of our template attack, we comply that phase by directly using
classification model from Chapter 4 that we generated from template building phase

with the template traces.

Moreover, in classical template attacks we can use the following mathematical expression
to describe and to have efficiency in computations in this phase. We explain this phase

according to [27, Chapter 5] description.

In template matching phase, we are trying to assess the Function 3.6 for a given trace.
Then, as we mentioned, the highest probability leads to the correct key.

Chapter 3. Side-Channel Attacks 22

When one may not want to process the exponentiation operation from Function 3.6, so

it is advised to apply logarithm to that function as following.

In p(t; (m®),)Yy = _%<1n(2.ﬂ-)NIP -det(C))) 4+ (t—m @) . (C)) 7 (£ —m (7))
(3.7)

Moreover, after we apply logarithm, we need to pick the template that is maximizing

the logarithm to retrieve the correct key.

Another computational concern that is expressed is that, in case we want to avoid taking
the inverse of the covariance matrix C from Function 3.7, we can take the covariance
matrix as the identity matrix (it is the matrix consisting of the identity element, in our

case 1s) which is an approximation method.

In that case, correlation between points of the trace is not considered, hence we call these
type of templates,the ones that are only are consisting of the mean vector, as reduced

template.

If we assign the covariance matrix C to identity matrix, then we have the Function 3.8.

Nip is the number of interesting points.

1

p() 2@ e

1 - o
rexp(—5 (t - m)Y . (¢ — m(9))) (3.8)
Furthermore, if we again avoid the exponentiation operation, we can use the following

function.

In p(t; m7)) = _%(m(z NP 4 (6 — mU9)Y . (£ — m©9))) (3.9)

According to our reference again, [27, Chapter 5], we choose the template with prob-
ability giving the lowest absolute value to find the correct key. Moreover the type of
templates that we use are the reduced templates from the Function 3.8 and Function
3.9. According to [27, Chapter 5], literature call these methods, that are using reduced

templates,least-square test.

Chapter 4

Classification (and Clustering)
Methods

In this chapter, we introduce three classification methods that we used within our tem-

plate attack as described in Section 3.5.

As classification is a machine learning discipline, we start by briefly introducing machine
learning and then we introduce our chosen classification methods. We picked these
methods since these are the three of the most utilized ones in machine learning, especially

a lot of research is being done on one of our classification methods, that is SVMs.

We also briefly talk about the clustering concept next to the classification in machine
learning in order to stress the way the classification works. In the end, we will indicate

the importance of feature selection in classification experiments.

4.1 Machine Learning

In the discipline of machine learning, classification and clustering algorithms play an
important role. In order to explain their role more elaborately, we use the example

given in [5].

That example from the book by Alpaydin [5], assumes that we wish to decide whether

an email is spam or legitimate.

What we do in that case is that, we give many samples of spam emails and legitimate
emails to the computer (a computer that is running a machine learning procedure) and
try to make the computer produce an algorithm to detect the new inputs as spam or
legitimate. Here, we are actually making the machine, the computer, learn from the

previous data and make predictions for the new data.

23

Chapter 4. Classification and Clustering Algorithms 24

In the next subsections, we use examples from [5] to introduce the classification methods

that we used.

4.2 C(Classification

Another example from [5] assumes that a bank is willing to make predictions when a
new application to a credit is made by a customer. Here, a credit is the loan that a

customer makes and then to be payed by installments back to the bank.

The bank needs to make sure that this customer will be able to pay the loan back.
Therefore, the bank needs to make prediction whether that customer would be able to
pay back and the bank could profit. For that reason, the bank calculates the risk level

of the customer when he/she applies for a credit.

In order to calculate the risk level, the bank uses information previous credit applications.
These previous credit applications consist of customers’ financial information such as

income, occupation, if the loan was paid and other relevant data.

From that past records, a machine learning algorithm can be extracted and decide
whether a new credit application, given the application owner’s data, has low-risk or
high-risk. In that scenario, we are actually facing a classification application, where a
bank needs to classify a customer into two classes namely low-risk and high-risk. That
classification is made by the input (the new customer’s data) and by the algorithm

extracted from the previous data (trained data).

As it can be observed from this example, we have a set of data in the beginning. Then
we train this set of data. Training is the process of finding associations or patterns
between the data and their label.

For instance, in the example the data is the customer’s financial data and the label
is low or high risk depending on whether the loan was paid back. After whether that
pattern was found between data and the label, we complete the training process and
have a rule/algorithm extracted out of it. Here, label stands for the name of the class
that the data belongs to.

This rule can be the one from [5], that is given as follows, it is also called ”discriminant”:
IF income > #; AND savings > 0o THEN low-risk ELSE high-risk

Now, we are to classify a new data without known label into one of the defined classes.
As it can be seen in here, we are using previous data that we call “feature”, when we

try to find a pattern. In this example, income and savings are the features.

In conclusion, the classification is the task of assigning objects into classes based on

chosen features. As it is indicated in [28], those classes are “mutually exclusive and

Chapter 4. Classification and Clustering Algorithms 25

exhaustive”. It means that the classification of the objects must be done to only one

class thus a classification of an object to more than one class should not occur.

There are many classification algorithms that train the recorded data and label the
new data in different ways. In our paper, we use three of the most commonly known

classification methods and we used Matlab for using these classification methods.

The algorithms that we use are:

1. Naive Bayes Classification
2. k-Nearest Neighbour Classification

3. Support vector machines (SVMs)

4.2.1 Naive Bayes Classification

In Naive Bayes Classification method, we use probability concepts rather than rules/al-
gorithms to make the classifications most likely. To explain that classification algorithm

(classifier), we make use of example from [28].

In the given example by Bramer, we are willing to classify a train into one of the classes
on time, late, very late, and cancelled to find out that this particular train will have

most likely one of these events.

We define these events and their probabilities respectively; we make sure that each of
these probabilities are between 0 and 1 while the sum of all probabilities are 1 in order

to satisfy “mutually exclusive and exhaustive” property.

Besides the labels (class names), we have the features for the classification. Those
features are day, season, wind and rain. The training data set consists of many samples
called instances. Two of the instances from the training dataset of [28] can be observed
from Table 4.1.

day season | wind | rain class

weekday | spring | normal | none | on time

saturday | winter | normal | none late

TABLE 4.1: Two samples from the Training Data Set

In [28], the definition of Naive Bayes is made as follows:

We have classes as ¢y, ¢g, ..., ¢, (mutually exclusive and exhaustive). Their prior prob-
abilities are denoted as P(cy), P(c2),..., P(ck). There are n features ay,ag, ..., a, with
values v1,v2, ..., v, respectively. For each class cy,ca,...,c; we calculate the posterior

probability as:

Chapter 4. Classification and Clustering Algorithms 26

P(c¢;) x P(a; = v1 and ag = ve... and a,, = v,|¢;)
for¢;, 0 €1,2,...k.

If we assume that the attributes are independent from each other, that expression is

equal to
P(c;) x P(a1 = vi|e;) x Plag = va|¢;) X ... X P(an, = vplc;)

As we compute this value for each class ¢;, and we pick the class index that is giving

the maximum value.

4.2.2 k-Nearest Neighbour Classification

k-Nearest Neighbour Classification (k-NN) is a classification method based on using the
closest instances to the unlabeled data to be classified. Basically, according to [28], it

consists of two steps and forms the following structure;

1. The number of k closest instances (from the training set) to the sample is chosen

2. The majority label (class) for the chosen closest instances will be class for the
unlabeled data

The distance metric plays an important role as we determine the closest instance accord-
ing to chosen distance metric. In k-NN, we can utilize Euclidean distance or Manhattan

Distance for example.

Manhattan distance between two points A with coordinates (z4,y4) and B with coor-

dinates (zp,yp) is defined as |z4 — x|+ |ya — yB|.

Figure 4.1 from [4] illustrates k-NN as the value k changes. In that example we have

two classes namely A and B. 7 is the unlabeled data that we apply k-NN to classify it.

In the leftmost situation from Figure 4.1, £ = 1 we look for the closest labeled data

point. Since A is the closest one to 7, we classify 7 as A.

For the situation that has been shown in the middle from Figure 4.1, we have k = 2
case. We see that both A and B are the two closest labeled data points. Thus, we have
A, B in our set of closest data point labels for the given k value. In that case, we are
not able to classify ? since we have the same number of elements from those different

classes.

In the rightmost situation of Figure 4.1, the closest data point labels for the given k

value is A, B, A, hence, 7 is classified as A this time.

Chapter 4. Classification and Clustering Algorithms

27

A A A B A A A B A s
A AL A
A L 8 B A % i B A :.
A 71 8B A 7 B T A7
AN B A % B AN
B g -
A A A
° g B ° 5 8 ¢
B B B

FIGURE 4.1: k-NN classification for k =1, k =2 and k = 3 [4]

4.2.3 Support vector machines (SVMs)

The support vector machines (SVMs) is defined as a linear classification method. Linear

classification is applied to the data set such that instances of a class are linearly separable

from instances of other classes as [5] explains.

To explain what do we mean with linearly separable classes, we can use Figure 4.2 from

[5]. As Alpaydin [5] explains, it can be observed that there is a hyperplane H; for each

class C; where data belongs to C; locates on the positive side of H; while other data

belonging to other classes stay in the negative side of H;.

[‘.

o]

FIGURE 4.2: Sample linearly separable classes [5]

Before we introduce SVMs, we need to take a look at hyperlanes.

Definition 4.1. Hyperplane For scalar wi, wo, ..., w, with property that not all these

scalars equal to 0, we have vectors in R", in the form

Chapter 4. Classification and Clustering Algorithms 28

T

Z2

In

where wix1 + wozs + ... + WpT, = C.

We call the set S a hyperplane and denoted as § = {? WX = c¢}. In other words,

[29] indicates that it is the vector subspace with codimension-1 of a vector space.

According to [6] SVMs technique consists of several aspects.

The first aspect that we talk about is the class separation, which is the main target
of SVM classification. We have two classes in the beginning, that is why we have the

binary classification term.

Our objective is to find an optimal hyper-plane that is separating the two classes, while
leaving the maximum margin between two classes’ closest points according to [6]. We call
these closest points from different classes support vectors while the optimal hyperplane

locates in the middle of the margin.

In order to express that description better we demonstrate it using Figure 4.3.

Margin

Separating
Hyperplane

Support Vectors i

FIGURE 4.3: SVM classification from [6] in linear separable case

Nonlinearity is another property of SVM according to [6], it is a very important one
because it says that in case that we are not able to have a separator that is linear,
then SVM tries to find another dimensional space where we can find a linear separating

hyperplane via projecting the data points into that new dimensional space.

Chapter 4. Classification and Clustering Algorithms 29

It is also mentioned that, in order to process this projection of the data points into a

new dimensional space, a type of method called kernel techniques is used.

Moreover, we have another task called problem solution given by [6]. It basically says
that the entire function of SVM can be considered as an optimization problem that is

quadratic.

That optimization is done to maximize the margin [30]. If we recall the margin, it is the

distance between closest points of the classes to the separating hyperplane.

In other words, margin is the distance between the support vectors. Moreover maximiz-
ing the margin problem is defined as an optimization problem where that optimization

problem is given as in 4.3, [30].

u=w-T—0b (4.2)

x is the input vector and w is defined as the normal vector to the hyperplane. We have

the SVM output in linear setting is as in Eq. (4.2), where the margin is = [30].

(1112
@zz@”ﬁ” subject to y; (@ - ; — b) > 1, Vi, (4.3)
w,

x; from 4.3 corresponds to the input training point with index i and y; (that are either
+1 or -1) is the corresponding output of SVM [30].

Furthermore, as SVMs are being used, new features are being added such as multi-class
classification. As we mentioned before, SVMs are invented and utilized as a binary

classification method in the beginning.

4.3 Clustering

Clustering can be seen as classification without class labels. Here the aim is to keep
similar objects together in the same cluster while dissimilar objects are in different

clusters, as [28] indicates.

As we have in classification, there are many clustering algorithms as well. We briefly
introduce one of the most commonly used clustering algorithms called k-means cluster-

ing.

Chapter 4. Classification and Clustering Algorithms 30

4.3.1 k-means Clustering

In k-means clustering, we first assign a value for & which stands for the total number
of clusters that we are willing to have in the end. Then, the algorithm picks k random

instances from the data set and sets them as the temporal centroids of the clusters.

The instances are clustered based on their closest centroids, that is the end of first run
of the loop. Now a new assignment of centroids is made and we process the same steps
in each loop until we reach a point where we do not need to change the centorids (the

measurements stay stable).

4.4 Feature Selection for Classifying High Dimensional Data

The features of the instances are given in the examples in previous sections. For instance
in Section 4.2 we have the features income and savings for the instances (clients of the
bank). They have an important role in classification, as we use them to decide similarities

and therefore detect patterns.

Another benefit of working with features is that, when we have good quality of features
out of other features, we can run our classification based on these better qualified ones.
That gives us twofold advantage namely, we have a better classification in the end
because bad quality in features may lead us misclassifications; secondly we get rid of

computation overhead if our data set consists of many features.

As we mention in our future work, in case of having large data set for our templates
we can use that method to facilitate and qualify the classification within our template
attack.

Chapter 5

Our Attack

In this chapter, we demonstrate how we applied our attack both in theory and in practice.
We use template attack from Section 3.5 with classification methods we introduce in
Chapter 4.

For our analysis, we use traces that were collected with the setup of [31]. The device
under attack is an STM34F4 micro-controller with the ARM Cortex-M4 processor with
PolarSSL (Version 1.3.7, https://tls.mbed.org/) assembly code and Double-and-Add Al-
ways implementation as in Algorithm 2. The template traces were collected with a 54855
Infiniium Agilent oscilloscope and a Langer EMV-TECHNIK RF-U5-2 near field probe.
Our attack is performed on the Brainpool curve BP256r1 by [32]. The way we get mea-
surements is that we captured 10° sample per second. And we have EM consumption

measurements.

We make the same assumptions as [31] such that, the attacker has the information on
input P to the device under attack, has the information on the scalar multiplication

implementation that is used and is able to choose the input.

Unlikely in classical template attacks from Section 3.5, the attacker does not need to
know the keys used in the experiment device since we are attacking bit by bit to the key

with similar approach to [1].

Moreover, as [31] indicates, as the attacker can choose the input point our attack also
can be applied for the Diffie-Hellman key exchange protocol and if the attacker knows
the input to the device under attack then our attack also can be applied to ECDSA.

Furthermore, similarly to [31], we have the input points in affine form and it is converted

to Jacobian coordinates (see Section 2.2.2).

Our data set consists of two types of power traces namely, templates and target. We

have the template power traces, we refer to those traces as training data in machine

31

Chapter 5. Ezperiments - Practical Work 32

learning terminology as we mention in Section 4.2. While the target trace is the power

trace that we gather from the actual device under attack.

For the classification methods we used a computer running a 64-bit Operating System
Windows 7 with processor Intel i5-4590 CPU @ 3.30GHz. The software implementations

are done in the Matlab (version R2014a) environment.

The main reason that we chose classification algorithms to perform our side-channel
analysis is the fact that their structure fit perfectly to the template attack characteristics.
That is because, as we have two phases namely template building and template matching,
as we introduce in Chapter 3; we first train the data set via creating a model with our

classification methods and then we use that method to classify the new unlabeled trace.

We elaborate the attack in the next sections.

5.1 Theory of the Attack

The general steps of our template attack, similarly to [1] , can be described as below:

1. The attacker gives the input Point P to the actual device under attack and gets
one power trace for the elliptic curve scalar multiplication run with this input.

That received power consumption trace is called the target trace.

2. The attacker gives the input of multiples of point P to the experiment device and
gets the respected power trace for the elliptic curve scalar multiplication run with
these inputs. We call the power traces that we captured for each of the multiples
of P as template trace. In practice, we have the power traces for the 2P and 3P

(160 template trace per each).

3. In the end, the attacker has only one target trace from input point P and 160
template trace from inputs 2P and 3P. Now, the attacker tries to find out the
second most significant bit value of the key k, by classifying the first multiplication
of the second iteration occurring on target trace using the first multiplication of

the first iteration of the template traces.

Figure 5.1 illustrates these steps above.

The inputs P, 2P and 3P are shown in Figure 5.1. The red rectangles represents the
multiplication patterns that we focus. As in [31], we look for the 19th multiplication
pattern in the target trace P and the first multiplication pattern in the template traces.
That is because, in the Brainpool curves, the first iteration of the Double-and-Add
Always algorithm consists of 18 multiplications. When P passes the first iteration (in the

first multiplication of the second iteration of the Double-and-Add Always), it becomes

Chapter 5. Ezperiments - Practical Work 33

Actual
Device

2P —— | Qur
Device

Our
3P —— | Device

FIGURE 5.1: Sample illustration of our attack. These points and the traces are only
for illustration.

either 2P or 3P at the 19th multiplication (the first multiplication pattern of the second
iteration), while the traces with input 2P and 3P have the same values until the end of

the first multiplication iteration.

As we apply a template attack we follow the two phases that we describe in Section
3.5.2 and Section 3.5.3. Our templates consist of 2P and 3P template traces produced
from our experiment that is assumed to be identical to the device under attack (in the
theory of our attack we assume to have all multiples (like 2P, 3P, 4P, 5P) of P in our
template traces set, however due to file formats, we were able to apply our attack with
2P and 3P trace templates) while the target trace is the power consumption when we

insert P as input data on the device under attack.

Figure 5.2 illustrates our target trace that we obtain by giving input point P into the
device under attack.

The training data (templates) is to be modeled, before the classification, in the template
building phase because we need to characterize the device under attack. Then we can

classify the new trace with that model.

Chapter 5. Ezperiments - Practical Work 34

FIGURE 5.2: Our target trace P

That process is completed via chosen classification method specific Matlab functions
such as fitcsvm for SVMs, fitcknn for k-Nearest Neighbour or fitcnb for Naive
Bayes Classification. Those functions return a model that is trained via the template
traces (training data) which is called as template building. That is because, that model

reflects the characteristics of the device under attack.

Besides our data set, we have selected mostly used classification methods that we in-
dicated Chapter 4; SVMs, k-Nearest Neighbour and Naive Bayes Classification. These

methods are used for the template matching phase.

In the beginning of our attack, we need to split out target trace (we also call it target
trace P), that we acquire by giving point P as input to the device under attack, into
chunks where Double-and-Add Always algorithm from Section 2.3.1 operates an iteration
in each of these chunks. Therefore, we first need to find those chunks. In order to do
that, we need to find the multiplication patterns in the template traces as in work [31],
where each pattern found is considered as a chunk. [31] suggests to cross-correlate the
first found multiplication pattern from the template trace with the entire target trace
P. Cross-correlating the multiplication pattern with trace P helps us to investigate the
particular parts in this trace where a multiplication occurs because of Double-and-Add

Algorithm iterations.
According to [31], PolarSSL provides an integer multiplication as in Algorithm 4.

When Algorithm 4 is running, it forms several patterns. An interesting one for us is
the multiplication pattern, shown in Figure 5.3. It indicates the 32-bit multiplication
(one for each peak in total 8 peaks, since A and B are 256-bits) during the execution

of the algorithm. We can spot this pattern by running our experiment device with

Chapter 5. Ezperiments - Practical Work 35

Algorithm 4 PolarSSL Integer Multiplication [31]
Input: A, and By...By of 256-bits long
Output: X =Ax B

1: X+0

2: for © + 7 down to 0 do

3: (C, Xty Xit 6y vees XZ) — (Xi+7, ,XZ) + A X B;
4: J—1+8

5: repeat

6: (C,Xj)(—Xj+C

7: j—i+1

8: until C' # 0

9: end for

10: return X

the cryptographic operation activated or not. When the scalar multiplication is not
activated, we should not be able to see this 8-peak multiplication pattern. As a result,
if we have the first multiplication pattern found on the template trace correctly, then we
can cross-correlate it with the target trace P in order to find the multiplication patterns

in this trace as well.

ﬂ.m T T T I L) T T T T

0.03

0.02

0.1

-0.01

-1.02

-0.03

—DDE i i i i i i i i i
0 100 200 300 400 500 600 VOO BOO 900 1000

FIGURE 5.3: The first and typical Multiplication Pattern

Now, we have a target trace by giving point P as input to the device under attack as in
Figure 5.2 and a multiplication pattern as in Figure 5.3. Before we start to follow steps

from Section 3.5, we do the following.

Chapter 5. Ezperiments - Practical Work 36

As we mentioned before, we follow the procedure suggested by [31] which is cross-
correlating the target power trace with the multiplication pattern in order to find the

specific parts of the target trace where the multiplication occurs.

The setup of [31] provides the traces with their interesting parts e.g. the first multiplica-
tion pattern of the second iteration for the target trace (the 19th multiplication pattern)
and the first multiplication of the first iteration for the templates for computation effi-

ciency.

Therefore, when we cross-correlate the target trace with the multiplication pattern, the

first high correlated part of the trace is the 19th multiplication pattern.

Figure 5.4 demonstrates where we have the high-correlated parts between the multipli-
cation pattern and the target trace P. In Figure 5.4 we indicate the coordinates of the
19th multiplication pattern (in figure it is the first one because only the interesting parts

are chosen) that we found via counting.

It can be seen in Figure 5.4 the first correlated pattern is the one that we already
computed with the x-coordinate starting at 2.236e4 and 1000 sample long (1 microsecond
long), i.e. 2.236e4 + (1 : 1000).

| * 2238e04
02k aime -

FIGURE 5.4: The correlated patterns and the first pattern (the 19th) is chosen

As we find all high-correlated parts of the target trace P, we select those chunks as
these are the ones where the multiplication occurs at the interesting parts of the target
trace P for a typical Brainpool curve. We can observe from the Double-and-Add Always
algorithm that when we give the input P, and a scalar I- bit long, we then have £ number

of iterations.

In the first iteration, at the second most significant bit of k, lets denote it as k;_o, with
input P we have 2P when k;_o5 =0 or 3P when k; o = 1.

As a result we can observe that, in the first multiplication pattern we are at the bit k;_o

such that as we give P as input we can either have 2P or 3P as output.

As we iterate through all multiplication patterns, we have binary choices for each found
correlation. Therefore, we can use our templates for those outputs. For the templates

that we use for the classification methods, we select the first multiplication pattern of

Chapter 5. Ezperiments - Practical Work 37

the first iteration of the template traces always for the second most significant bit of the

key.

What we do in our attack is that, since we have templates for 2P (160 templates) and
3P (160 templates), we used classification methods with those templates and the end of
the first multiplication pattern of these templates in order to investigate which point is
computed in the end of 19th multiplication of Double-and-Add Always Algorithm.

It is elaborated in the following section that, we check different intervals as well as
different number of traces for the beginning of the template traces 2P and 3P until the
first multiplication pattern. And we use the three classification methods as well as we

try two different values for k— Nearest Neighbour method.

That described procedure should be applied for each found multiplication pattern in
order to retrieve the entire key scalar k. That is, as we move to the next iteration
(multiplication pattern) we need to use the related template traces and the end of the

current pattern then apply the classification methods.

5.2 Application of the Attack using Matlab

In this section we show how we applied our attack with our pieces of Matlab code.

As we mentioned in Section 5.1, the first multiplication pattern is computed via count-
ing the peaks in the target trace P with respect to multiplication in Algorithm 4 by
PolarSSL.

As the traces are cut in their interesting parts for each iteration, its starting coordinate
(the 19th multiplication’s) is 2.236e4 for 1000 samples, we use the Matlab function xcorr
on that pattern and the target trace P. That function cross-correlates the captured

multiplication pattern with the entire target trace P.

As a result we can see where multiplication occurs on the target trace for other interesting
points e.g. 40th pattern for the next bit of the key, and we use these specific parts for

classification.

Our data consists of training data and sample. Training data refers to our templates

(2P and 3P) while the sample is our target trace P.

Thus, we first create our sample data variable to be classified and assign it to the value
of the first occurrence of the multiplication pattern (the value can be seen from Figure
5.4).

1 %The target point (sample data)%
2 sample = traceP{l,1}(2.236e4+(1:1000));

Chapter 5. Ezperiments - Practical Work 38

Later, we cross-correlate the multiplication pattern with the templates in order to find
the parts where multiplication occurs. The values for the template trace 2P can be seen

from Figure 5.5 and for 3P can be seen from Figure 5.6.

o T T T T T T

02 =

K2 T4
o | 013 -

2P

FIGURE 5.6: The correlated patterns and the first pattern is chosen for template trace
3P

Then we pick these intervals for the templates as follows.

1 %Collecting the training data%
2 for k =1 : 10

3 for 1= 1: 16

4 k

5 1

6 tr2=[tr2; trace2P{k,1}((2.236e+04)+(1:1000))"'1;
7 tr3=[tr3; trace3P{k,1}((2.239e+04)+(1:1000))"'];
8 end

9 end

In that for-loop, we have 160 template traces for 2P and 160 template traces for 3P. As
we mentioned in the beginning of this chapter, we need to consider the first multiplication
pattern of the first iteration for the template traces 2P and 3P while we take the first
multiplication pattern of the second iteration, i.e. the 19th multiplication pattern, for

the target trace P.

Chapter 5. Ezperiments - Practical Work 39

Moreover, we also made our experiments with different number of template traces such
as 20, 40, 80, 160, 320 number of traces in total where each of them has the same number
of template traces for 2P and 3P.

The template building is characterizing the device under attack via the template traces.
In our case, we do that process via training the template traces and retrieve a model
out of that process. The training data set is the set of template traces 2P and 3P. This

is done as following.

1 %k—-Nearest Neighbor Classifier$%
2 MdlknnX = fitcknn(training,group, 'NumNeighbors',4); %$k=4
3 Mdlk = fitcknn(training,group); %k=1

5 %$Naive Bayes Classifier$%

6 Mdl = fitNaiveBayes (training,group);

8 %SVM Classifier$%

9 SVMModel = fitcsvm(training,group);

The variable “group” refers the set of labels of the classes which is “2P” and “3P”.
The model creating function depending on the selected classification method takes the
training data set (template traces 2P and 3P) and the labels “2P” and “3P” then

reflects the characteristics of the data classification.

Later, we use those models in order to be able to classify an unlabeled data, in our case

Wy

it is the chosen multiplication pattern. Again, refers to transpose in that sample

illustration.

%k—-Nearest Neighbor Classifier%
2 [class_kNN, score_kNN]=predict (knnMdl, sample');
[class_kNNX, score_kNNX]=predict (MdlknnX, sample');

5 %$Naive Bayes Classifier$%
6 class_NB=predict (nbMdl, sample');

7 score_postNB=posterior (Mdl, sample');

9 %SVM Classifier$%

10 [class_SVM, score_svm]=predict (SVMModel, sample');

That piece of code, uses the Matlab function predict which takes the created model

and the unlabeled data and returns the class that data belongs to and the score.

For SVM classification, score is defined as the distance from the separating hyperplane
(denoted as decision boundary as well) while for Naive Bayes Classification and for

k-Nearest Neighbour, score is the posterior probability which Matlab indicates.

Chapter 5. Ezperiments - Practical Work 40

For k-Nearest Neighbour functions, fitcknn(training, group) trains the training
data using £ = 1 number of neighbours while fitcknn (training, group, "NumNeighbors", 4)
trains the data with k£ = 150 number of neighbours. The default distance metric is Eu-

clidean distance.

Moreover, in the predict function used for k-Nearest Neighbour functions follows the
same steps from Section 4.2.2. It first looks at the & number of closest neighbours to
the given unlabeled data and checks the labels of these closest neighbours. The label
that is occurring the most (in other words the highest posterior probability) is given as

the class that this new data belongs to.

For Naive Bayes classification, we used the function fitNaiveBayes (training, group).
We need to note that this is the function that is compatible with the Matlab version
that we used.

We need to note that, fitcsvm(training, group) trains the training data with given
labels according to the SVM method in Section 4.2.3. The call of this function with
these inputs, solves the defined optimization problem from Section 4.2.3 with a method
called Sequential Minimal Optimization (SMO) [30].

5.3 Results and Analysis

As we were able to apply our attack for the second most significant bit of the key scalar
k because of having templates for 2P and 3P, we run all three classification algorithms
(SVM, knn (for £k =1 and k£ = 4) and nb) on the first multiplication pattern.

The key that we use in the experiment has the second most significant bit as 0, therefore

the expected class that the classification methods should return is 2P.

We indicate in previous section that we run our classification according to the intervals
that we found via cross-correlating the multiplication pattern with the traces. We also
try different number of template traces such as 20, 40, 80, 160, 320 number of traces in
total.

Moreover, as we indicated and showed in Figure 4.1 in Section 4.2.2 the k-Nearest
Neighbour classification may lead to misclassification depending on the chosen number
of neighbours. Therefore, we used that method with two different k values such that;
k =1 and k = 4. The reason of choosing k£ = 1 is that it is one of the interesting option
and the default value in case the number of neighbors is not mentioned on the function

fitcknn.

Moreover, as we indicate before, we use the score values for the classification methods

so that we can see the posterior probability (or the distance from the hyperplane for

Chapter 5. Ezperiments - Practical Work 41

Templates | kNN (k=1) | kNN (k =4) | Naive Bayes SVM
320 21, 0] 2L, 0] 2[1,0] | 2 [1.124750e+00, -1.124750e+00]
160 2 (1, 0] 2 (1, 0] 2[1,0] | 2 [1.084593e+00, -1.084593e+00]
80 2 (1, 0] 2 (1, 0] 2[1,0] | 2 [1.040720e+00, -1.040720e+00]
40 2 (1, 0] 2 (1, 0] 2 (1, 0] 2 [6.758751e-01, -6.758751e-01]
20 2 (1, 0] 2 [1, 0] 2 [1, 0] 2 [5.5464526-01, -5.546452¢-01]

TABLE 5.1: Results from different number of templates

SVM) given to the sample with different training data by the same type of classification
method.

The reason that we log the scores is that, score values help us to make comparisons of

the classification of different data when we use the same classification method.

Table 5.1 shows the classification results when we pick the 2.236e+04 for target trace P,
2.236e4-04 for template trace 2P and 2.239e+04 for template trace 3P for 1000 sample

“

long. Moreover, output format of this table is [b, c|” where a is the classification
output (class that the chosen interval of the target trace belongs to); [b,] is the score

value for the given classification method.

Another observation could be that as we have the less number of templates, the score
value for the SVM drops which means that the sample becomes closer to the separating

hyperplane i.e. we have better performance when we have more number of templates.

In order to check if our code is performing correctly, we also changed the order of
creating the arrays e.g. making the class labels (3, 2) instead of (2,3) and training data
consisting of first 3P and then 2P. According to the results, we received exactly the

same classification results.

On the other hand, we could use feature extraction in our implementation if we would

not have that efficiency, we introduce the feature extraction in Section 4.4.

Our attack in theory and in application uses binary classification since in the end of

each iteration the output trace can be assigned to one of two possible classes.

According to the results for each of the classification methods with the function predict,

we successfully retrieved the bit correctly as experiments returned us the class label '2P’.

Chapter 6

Conclusion and Future Work

We designed and applied a template attack on Double-and-Add Always algorithm. In
our attack, we made use of three well-known classification methods called Support Vector

Machines, k-Nearest Neighbour and Naive Bayes Classification.

As we apply a template attack, we had two main steps in our attack called template
building and template matching. For both of these steps, we used classification tech-
niques such that in template building phase we generated a model with our templates
(called training data) in order to make classification while in template matching step we
directly apply the classification methods by using the generated model and the unlabeled
data.

In order to create a model, we used specific Matlab functions depending on the chosen
classification methods, e.g. fitcsvm for SVM classification. These functions uses the
training data which is our template traces and create a model. That model can be
considered as the characterization of the device under attack since it helps to classify
the unlabeled data.

After generating the model, the characteristics of the device under attack, we classify

the new data which corresponds to template matching phase.

Before apply the phases of template attacks we determine the multiplication patterns in

the target phase so that we know where the multiplication occurs.

We applied these three classification methods with our template traces 2P and 3P. In
order to see the k-nn classification results depends on the chosen number of neighbours,
we also used k-nn with £ = 1. And we classified the first multiplication pattern in our

target trace P with the generated models.

According to the classification results that we acquired from the chosen intervals from

cross-correlating, we successfully retrieved the bit value correctly and captured the bit

42

Chapter 6. Conclusion and Future Work 43

value as 0 since the classified pattern was labeled as 2P by all the classification methods

that we used.

Also results show that, as we have more templates we have more success in classification
for SVM.

Classification methods using Matlab is convenient for template attacks because the im-
plementation progress consists of two steps namely; model generation and predicting
the class of the new data. As we know from Chapter 3, template attacks consists of

two phases as well that are respectively correspond to these two steps.

A way to protect a device from our attack is point blinding similar to [31]. The infor-
mation of input is necessary for our template generation, therefore point blinding and

randomization of the projective coordinates can be proposed as countermeasures.

According to explanation by [14], point blinding is the technique where we operate
k x (P + R) for some random point R that we know k& x R = S, instead of computing
kx P=Q. We can see that, k x (P+ R) =k x P+kx R=Q+S. Then, we subtract
S from k x (P + R) and we get @ as a result. That countermeasure, makes the attack
described in [14] unfeasible since this attack tries to capture k& by computing Q; for all
possible P; where QQ; = k x P;.

Randomization of the projective coordinates, briefly, uses a random value A and multi-
plies the projective coordinates X,Y, Z, from Section 2.2.1, with this value depending
on the preference of the implementation e.g. randomization after each specific operation.
Therefore, it will be hard for an attacker to track a point since its coordinate values are

not kept the same.

As a future work, our attack can be applied to Montgomery Ladder (In Section 2.3.2 we
introduce this algorithm) as that algorithm forms a similar structure with Double-and-
Add Always algorithm and which also could be applied to the hardware implementation
of these algorithms.

Moreover, in case of having more templates and/or high dimensional data, we can make

use of feature extraction in order to have more accurate and efficient classification.

Appendix A

Matlab Code

2 %Addressing the directories of the trace folders is done%

4 %Assigning time and trace values is done$%

6 %Collecting the training data%

7 for k =1 : 10

8 for 1= 1: 16

9 k

10 1

11 tr2=[tr2; trace2P{k,1}((2.236e+04)+(1:1000))"'1;
12 tr3=[tr3; trace3P{k,1}((2.239e+04)+(1:1000))"'];
13 end

14 end

15 training=[tr2;tr3];

16

17 %Collecting the relevant labels (groups)$%

18 group=[];

19 for 1 = 1:160

20 group=[group; 2];
21 end

22 for 1 = 1:160

23 group=|[group; 3];
24 end

25

26 %The target point (sample data)$%

27 sample = traceP{l,1}((2.236e+04)+(1:1000));

28

29 %KNN with k=4

30 MdlknnX = fitcknn(training, group, 'NumNeighbors', 4);
31 [class_kNNX, score_kNNX]=predict (MdlknnX, sample');
32

33 SKNN with k=1

34 Mdlk = fitcknn(training, group);

44

Appendix A. Matlab Code

36

37

38

39

40

41

42

[class_kNN, score_kNN]=predict (Mdlk, sample');

%$Naive Bayes

Mdl = fitNaiveBayes (training, group) ;

class_NB=predict (Mdl, sample');

score_postNB=posterior (Mdl, sample');

$SVM

SVMModel = fitcsvm(training, group) ;

[class_SVM, score3]=predict (SVMModel,

sample');

Bibliography

[1]

[7]

Lejla Batina, Lukasz Chmielewski, Louiza Papachristodoulou, Peter Schwabe, and
Michael Tunstall. Online template attacks. In Progress in Cryptology - IN-
DOCRYPT 2014 - 15th International Conference on Cryptology in India, New
Delhi, India, December 14-17, 2014, Proceedings, pages 21-36, 2014. doi: 10.1007/
978-3-319-13039-2_2. URL http://dx.doi.org/10.1007/978-3-319-13039-2_2.

C. Paar and J. Pelzl. Understanding Cryptography: A Textbook for Students and
Practitioners. Springer-Verlag New York Inc, 2010.

Henri Cohen, Atsuko Miyaji, and Takatoshi Ono. Efficient elliptic curve exponen-
tiation using mixed coordinates. In Kazuo Ohta and Dingyi Pei, editors, Advances
in Cryptology — ASIACRYPT’98, volume 1514 of Lecture Notes in Computer Sci-
ence, pages 51-65. Springer Berlin Heidelberg, 1998. ISBN 978-3-540-65109-3. doi:
10.1007/3-540-49649-1_6. URL http://dx.doi.org/10.1007/3-540-49649-1_6.

Classification. http://trevorwhitney.com/data_mining/classification.

Ethem Alpaydin. Introduction to Machine Learning. The MIT Press, 2nd edition,
2010. ISBN 026201243X, 9780262012430.

David Meyer and Technische Universitdt Wien. Support vector machines. the in-

terface to libsvm in package €1071, 2001.

Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analy-
sis. In Proceedings of the 19th Annual International Cryptology Conference on
Advances in Cryptology, CRYPTO 99, pages 388-397, London, UK, UK, 1999.
Springer-Verlag. ISBN 3-540-66347-9. URL http://dl.acm.org/citation.cfm?
id=646764.703989.

Dag Arne Osvik, Adi Shamir, and Eran Tromer. cache attacks and countermeasures:
the case of aes. In Proceedings of the 2006 The Cryptographers’ Track at the
RSA Conference on Topics in Cryptology, CT-RSA’06, pages 1-20, Berlin, Hei-
delberg, 2006. Springer-Verlag. ISBN 3-540-31033-9, 978-3-540-31033-4. doi:
10.1007/11605805_1. URL http://dx.doi.org/10.1007/11605805_1.

46

Bibliography 47

[9]

[11]

[12]

[13]

[14]

[15]

Kai Schramm, Gregor Leander, Patrick Felke, and Christof Paar. A collision-attack
on AES: combining side channel- and differential-attack. In Cryptographic Hard-
ware and Embedded Systems - CHES 2004: 6th International Workshop Cambridge,
MA, USA, August 11-13, 2004. Proceedings, pages 163-175, 2004. doi: 10.1007/
978-3-540-28632-5_12. URL http://dx.doi.org/10.1007/978-3-540-28632-5_
12.

Kai Schramm, Thomas J. Wollinger, and Christof Paar. A New Class of Collision
Attacks and Its Application to DES. In Thomas Johansson, editor, FSFE, volume
2887 of Lecture Notes in Computer Science, pages 206—222. Springer, 2003. ISBN
3-540-20449-0. URL http://dblp.uni-trier.de/db/conf/fse/fse2003.html#
SchrammWPO3.

Paul C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems. In Proceedings of the 16th Annual International Cryptology
Conference on Advances in Cryptology, CRYPTO ’96, pages 104-113, London,
UK, UK, 1996. Springer-Verlag. ISBN 3-540-61512-1. URL http://dl.acm.org/
citation.cfm?7id=646761.706156.

Olivier Billet and Marc Joye. The Jacobi Model of an Elliptic Curve and Side-
Channel Analysis. In Marc P. C. Fossorier, Tom Hgholdt, and Alain Poli, editors,
AAECC, Lecture Notes in Computer Science, pages 34-42. Springer, 2003. ISBN
3-540-40111-3. URL http://dblp.uni-trier.de/db/conf/aaecc/aaecc2003.
html#BilletJO3.

Eric Brier, Marc Joye, and To Erik De Win. Weierstraf elliptic curves and side-
channel attacks. In Public Key Cryptography — PKC 2002, volume 227} of LNCS,
pages 335-345. Springer—Verlag, 2002.

Jean-Sébastien Coron. Resistance Against Differential Power Analysis for Ellip-
tic Curve Cryptosystems. In Proceedings of the First International Workshop
on Cryptographic Hardware and Embedded Systems, CHES 99, pages 292-302,
London, UK, UK, 1999. Springer-Verlag. ISBN 3-540-66646-X. URL http:
//dl.acm.org/citation.cfm?id=648252.752381.

Pierre-Yvan Liardet and Nigel P. Smart. Preventing SPA/DPA in ECC Systems
Using the Jacobi Form. In Cetin Kaya Kog, David Naccache, and Christof Paar,
editors, CHES, number Generators in Lecture Notes in Computer Science, pages
391-401. Springer, 2001. ISBN 3-540-42521-7. URL http://dblp.uni-trier.de/
db/conf/ches/ches2001.html#LiardetSO1.

Lejla Batina, Benedikt Gierlichs, and Kerstin Lemke-Rust. Differential Cluster
Analysis. In Christophe Clavier and Kris Gaj, editors, Cryptographic Hardware

Bibliography 48

[17]

[20]

[21]

[22]

and Embedded Systems - CHES 2009, volume 5747 of Lecture Notes in Com-
puter Science, pages 112—-127. Springer Berlin Heidelberg, 2009. ISBN 978-3-642-
04137-2. doi: 10.1007/978-3-642-04138-9_9. URL http://dx.doi.org/10.1007/
978-3-642-04138-9_9.

Lejla Batina, Jip Hogenboom, and Jasper G. J. van Woudenberg. Getting More
from PCA: First Results of Using Principal Component Analysis for Extensive
Power Analysis. In Proceedings of the 12th Conference on Topics in Cryptology,
CT-RSA’12, pages 383-397, Berlin, Heidelberg, 2012. Springer-Verlag. ISBN 978-
3-642-27953-9. doi: 10.1007/978-3-642-27954-6_24. URL http://dx.doi.org/10.
1007/978-3-642-27954-6_24.

Eric Brier, Christophe Clavier, and Francis Olivier. Correlation Power Analy-
sis with a Leakage Model. In Marc Joye and Jean-Jacques Quisquater, editors,
CHES, volume 3156 of Lecture Notes in Computer Science, pages 16—29. Springer,
2004. ISBN 3-540-22666-4. URL http://dblp.uni-trier.de/db/conf/ches/
ches2004.html#BrierC004.

Benedikt Gierlichs, Lejla Batina, Pim Tuyls, and Bart Preneel. Mutual Information
Analysis - A Generic Side-Channel Distinguisher. In Elisabeth Oswald and Pankaj
Rohatgi, editors, Cryptographic Hardware and Embedded Systems - CHES 2008,
volume 5154 of Lecture Notes in Computer Science, pages 426-442, Washington
DC,US, 2008. Springer-Verlag.

Marcel Medwed and Elisabeth Oswald. Template Attacks on ECDSA. In Kyo-Il
Chung, Kiwook Sohn, and Moti Yung, editors, Information Security Applications,
volume 5379 of Lecture Notes in Computer Science, pages 14-27. Springer Berlin
Heidelberg, 2009. ISBN 978-3-642-00305-9. doi: 10.1007/978-3-642-00306-6_2. URL
http://dx.doi.org/10.1007/978-3-642-00306-6_2.

Colin D. Walter. Sliding Windows Succumbs to Big Mac Attack. In Cetin Kaya
Kog, David Naccache, and Christof Paar, editors, CHES, volume 2162 of Lecture
Notes in Computer Science, pages 286-299. Springer, 2001. ISBN 3-540-42521-7.
URL http://dblp.uni-trier.de/db/conf/ches/ches2001.html#WalterO1l.

Johann Heyszl, Andreas Ibing, Stefan Mangard, Fabrizio De Santis, and Georg
Sigl. Clustering Algorithms for Non-profiled Single-Execution Attacks on Ex-
ponentiations. In Aurélien Francillon and Pankaj Rohatgi, editors, Smart Card
Research and Advanced Applications, volume 8419 of Lecture Notes in Computer
Science, pages 79-93. Springer International Publishing, 2013. ISBN 978-3-319-
08301-8. doi: 10.1007/978-3-319-08302-5_6. URL http://dx.doi.org/10.1007/
978-3-319-08302-5_6.

Bibliography 49

[23]

[24]

[25]

[26]

[32]

Peter Karsmakers, Benedikt Gierlichs, Kristiaan Pelckmans, Katrien De Cock, Jo-
han Suykens, Bart Preneel, and Bart De Moor. Side channel attacks on cryp-
tographic devices as a classification problem. Technical report, COSIC technical
report, 2009.

Marc Joye. Elliptic curves and side-channel analysis. In ST Journal of System

Research, volume 4, pages 17-21. ST Journal of System Research, 2003.

Aurélie Bauer, Eliane Jaulmes, Emmanuel Prouff, and Justine Wild. Horizontal and
Vertical Side-Channel Attacks against Secure RSA Implementations. In Ed Dawson,
editor, CT-RSA, volume 7779 of Lecture Notes in Computer Science, pages 1-17.
Springer, 2013. ISBN 978-3-642-36094-7. URL http://dblp.uni-trier.de/db/
conf/ctrsa/ctrsa2013.html#BauerJPW13.

Aurélie Bauer, Eliane Jaulmes, Emmanuel Prouff, and Justine Wild. Horizontal
Collision Correlation Attack on Elliptic Curves. In Tanja Lange, Kristin Lauter,
and Petr Lisonék, editors, Selected Areas in Cryptography — SAC 2013, volume 8282
of Lecture Notes in Computer Science, pages 553-570. Springer Berlin Heidelberg,
2014. ISBN 978-3-662-43413-0. doi: 10.1007/978-3-662-43414-7_28. URL http:
//dx.doi.org/10.1007/978-3-662-43414-7_28.

Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power Analysis Attacks:
Revealing the Secrets of Smart Cards (Advances in Information Security). Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 2007. ISBN 0387308571.

Max Bramer. Principles of Data Mining. Springer, 2007. ISBN 978-1-84628-765-7.

Eric W. Weisstein. ”Hyperplane.” From MathWorld-A Wolfram Web Resource.
URL http://mathworld.wolfram.com/Hyperplane.html.

John C. Platt. Sequential Minimal Optimization: A Fast Algorithm for Training
Support Vector Machines. Technical report, ADVANCES IN KERNEL METHODS
- SUPPORT VECTOR LEARNING, 1998.

Margaux Dugardin, Louiza Papachristodoulou, Zakaria Najm, Lejla Batina, Jean-
Luc Danger, Sylvain Guilley, Jean-Christophe Courrege, and Carine Therond. Dis-
mantling real-world ecc with horizontal and vertical template attacks. Cryptology
ePrint Archive, Report 2015/1001, 2015. http://eprint.iacr.org/.

M. Lochter and J. Merkle. Elliptic Curve Cryptography (ECC) Brainpool Standard

Curves and Curve Generation, 2010.

